ON DOMINANT DIMENSIONS OF QF-3 ALGEBRAS

BY HIROYUKI TACHIKAWA

Introduction. The complete cohomology theory of groups was extended by Nakayama [8] to the case of Frobenius algebras. He [10] also proposed to classify algebras in accordance with the length of a right augumented, two-sided, projective, injective resolution. One of the purposes of this paper is to give a partial extension of the above complete cohomology theory to the case of non-quasi-Frobenius algebras and another is to give an estimation of the length.

Let B be an associative algebra over a commutative field with unit element 1 and M a unital right B-module. If

$$(1) 0 \to M \to X_1 \to X_2 \to \cdots \to X_n$$

is a minimal injective resolution $\binom{1}{1}$ of M, then we shall say that M has dominant dimension $\geq n$, provided that X_k is projective for all $k \leq n$, where it should be noted even the zero module is considered to be projective. The largest such integer $\binom{2}{1}$ n is called in this paper the dominant dimension of M and denoted by domi. $\dim_B M$. When no such integer exists the dimension is defined to be ∞ . The modules we are chiefly concerned with are B_B which is B considered as a right module over itself and B_{B^o} which is B considered as a right module over $B^e = B \otimes B^0$. In fact domi.dim B^o is the length considered by Nakayama. In both cases B is a QF-3 algebra in the sense of Thrall [12] if and only if domi.dim $B \geq 1$ [11]. So our interest is confined to the class of QF-3 algebras.

On the other hand, for QF-3 algebras there exists a result established by Morita [6]. The result is stated as follows: For a given QF-3 algebra B let X be the unique minimal faithful right B-module. Denote by A the B-endomorphism algebra of X as a left operator domain. Then X is fully faithful as a left A-module and the A-endomorphism algebra B' of X is QF-3. Here a left A-module L is said to be fully faithful if every indecomposable projective left A-module as well as every indecomposable injective left A-module is A-isomorphic to a direct summand of L. The above settings about QF-3 algebras are fundamental in this paper and the meanings of notations A, B and B' will be retained throughout.

In §1 the correlation between domi.dim $_BM$ and domi.dim $_{B'}M\otimes_BB'$ is

Received by the editors April 5, 1963.

⁽¹⁾ The injective resolution (1) is said to be minimal if Im $\delta_k \supseteq$ the socle of X_{k+1} (cf. Eilenberg [2]).

⁽²⁾ If X_1 is not projective, we shall say the dominant dimension of M is zero.

discussed and as an application we obtain that if domi. $\dim_{B^o} B > 1$, then B = B'. The upper bound of dominant dimension of modules is investigated in §2. Especially domi. $\dim_{B^o} B \le \dim A + 1$ holds, provided $0 < \dim A < \infty$.

In [10] Nakayama has conjectured that B is quasi-Frobenius if domi. $\dim_{B^o} B = \infty$ and proved it for the case of B being a generalized uni-serial algebra. The author is, however, likely inclined to conjecture that B is quasi-Frobenius if domi. $\dim_B B = \infty$. In §3 we shall prove that our conjecture holds for the case of A being generalized uni-serial. Since domi. $\dim_{B^o} B \le \dim_{B^o} \dim_{B^o} B$, this assures Nakayama's conjecture is true for this case.

In the beginning of §4 we shall introduce as a generalization of Nakayama's automorphism of Frobenius algebra a ring-isomorphism between two subrings of B. Then following Kasch's argument in [4] we have the isomorphisms between (negative dimensional) cohomology groups over B^e -modules and (positive dimensional) homology groups over A^e -modules under a restriction of dimensions. Here it is noted that the restriction is determined by dominant dimension of a B^e -module.

1. **Reduction theorems.** Let B be a QF-3 algebra and eB the faithful, projective, injective right ideal of B, i.e., e is a suitable idempotent of B and eB is a dominant ideal in the sense of Thrall [12]. Let A be the B-endomorphism algebra of eB considered as a left operator domain of eB. Then A = eBe and from Lemma 17.4 of [6] we know eB is a fully faithful left A-module (for definition cf. Introduction). Denote by B' the A-endomorphism algebra of eB as a right operator domain. Then by Theorem 17.2 of [6], B' is a QF-3 algebra and there exists an idempotent f of B' such that eB = fB', and fB' is a faithful, projective, injective right B'-module. Let Be' be the dual representation module (i.e., $= \operatorname{Hom}_K(eB, K)$). Then by duality it is clear that there exists such an idempotent f' of B' that B'f' = Be'. Thus B is obtained as a subalgebra of B' which contains 1 and B'f' and fB'.

We may assume throughout that B is self-basic, that is to say, the basic algebra of B is isomorphic to B itself, for dominant dimensions and homological dimensions are invariant under any category-isomorphism. Now we shall prove

PROPOSITION 1.1. Let B and B' be QF-3 algebras just introduced above and M a right B-module. Let

$$(2) 0 \longrightarrow M \xrightarrow{\delta_0} X_1 \xrightarrow{\delta_1} X_2 \xrightarrow{\delta_2} \cdots \longrightarrow X_n$$

be an exact sequence of right B-homomorphisms δ_i , $0 \le i \le n$, where X_i is a direct sum of n_i -copies of eB. Then we have an exact sequence

(3)
$$M \otimes B' \xrightarrow{\Delta_0} Y_1 \xrightarrow{\Delta_1} Y_2 \xrightarrow{\Delta_2} \cdots \longrightarrow Y_n$$

of right B'-homomorphisms Δ_i , where Y_i is a direct sum of n_i -copies of fB'.

Proof. We shall prove that the induced sequence of right B'-homomorphisms

$$(3') M \underset{R}{\otimes} B' \xrightarrow{\Delta_0} X_1 \underset{R}{\otimes} B' \xrightarrow{\Delta_1} X_2 \underset{R}{\otimes} B' \xrightarrow{\Delta_2} \cdots \longrightarrow X_n \underset{R}{\otimes} B'$$

is exact. Put $\delta_i \otimes B' = \Delta_i$ and denote by 1 the unit element of B.

Consider right B-homomorphisms θ_i , $i \ge 0: X_i \to X_i \otimes_B B'$ defined by $\theta_i(x_i) = x_i \otimes 1 \in X \otimes_B B'$ for all $x_i \in X$, $i \ge 1$ and $\theta_0(x_0) = x_0 \otimes 1 \in M \otimes_B B'$ for all $x_0 \in M$. Then clearly every θ_i is a monomorphism. We shall express X_i , $i \ge 1$, as a direct sum of n_i -copies of $eB: X_i = \bigoplus_{j=1}^{n_i} u_j^i eB, u_j^i eB \approx eB$. Then we have $x_i \otimes b' = \sum_{j=1}^{n_i} u_j^i eb_j \otimes b' = \sum_{j=1}^{n_i} u_j e \otimes eb_j b'$, where $b' \in B'$, $b \in B$, $j = 1, 2, \dots, n$ and $x_i \otimes b' \in X_i \otimes_B B'$. Since eB = eB', $x_i \otimes b' = \sum_{j=1}^{n_i} u_j^i eb_j b' \otimes 1$ and it follows that θ_i , $i \ge 1$, is an epimorphism and consequently an isomorphism. Thus we obtain the following commutative diagram:

$$(4) \qquad 0 \longrightarrow M \qquad \xrightarrow{\delta_0} X_1 \qquad \xrightarrow{\delta_1} X_2 \qquad \xrightarrow{\delta_2} \cdots \qquad \longrightarrow X_n$$

$$\downarrow \theta_0 \qquad \qquad \downarrow \theta_1 \qquad \qquad \downarrow \theta_2 \qquad \qquad \downarrow \theta_n$$

$$M \otimes B' \xrightarrow{\Delta_0} X \otimes B' \xrightarrow{\Delta_1} X_2 \otimes B' \xrightarrow{\Delta_2} \cdots \longrightarrow X_n \otimes B'$$

where the upper row is exact. Since θ_i , i > 0, is an isomorphism, the exactness of (3') follows from (4).

COROLLARY 1.2. In Proposition 1.1 if it is assumed that n > 1, then M is a B-module which is obtained from a right B'-module by restricting its operator domain B' to B.

Proof. From (4) we have $M \approx \text{Ker } \delta_1 \approx \text{Ker } \Delta_1$. But since Δ_1 is considered to be a B'-homomorphism, the conclusion follows.

LEMMA 1.3. In Proposition 1.1 assume

$$0 \longrightarrow M \otimes B' \xrightarrow{\Delta_0} X_1 \otimes B'$$

is exact; then M is B-isomorphic to $M \otimes_B B'$.

Proof. By Proposition 1.1 we have the following commutative diagram:

$$0 \longrightarrow M \xrightarrow{\delta_0} X_1 \xrightarrow{\delta_1} X_2 \longrightarrow \cdots$$

$$\downarrow \theta_0 \qquad \qquad \downarrow \theta_1 \qquad \qquad \downarrow \theta_2$$

$$0 \longrightarrow M \underset{B}{\otimes} B' \xrightarrow{\Delta_0} X_1 \underset{B}{\otimes} B' \xrightarrow{\Delta_1} X_2 \underset{B}{\otimes} B' \longrightarrow \cdots$$

As θ_0 is a monomorphism, $\Delta_0 \theta_0$ is a monomorphism. However, $\operatorname{Im} \Delta_0 \theta_0 = \operatorname{Im} \theta_1 \delta_0 = \operatorname{Ker} \Delta_1 = \operatorname{Im} \Delta_0$; hence θ_0 is an isomorphism.

THEOREM 1.4. Let B and B' be QF-3 algebras as in Proposition 1.1. Assume domi. $\dim_B B > 1$; then B = B'.

Proof. From assumption the following exact sequence is given:

$$0 \to B \to X_1 \to X_2 \to \cdots \to X_n$$
, $n \ge 2$,

where X_i is a direct sum of n_i -copies of eB. Put $\Delta_i = \delta_i \otimes B'$, $i \ge 0$. Then since $B \ne B'$ implies $B \approx B \otimes B'$, by Lemma 1.3 we have only to prove

$$0 \longrightarrow B \underset{B}{\otimes} B' \xrightarrow{\Delta_0} X \underset{B}{\otimes} B'$$

is exact. Let $\Delta_0(1 \otimes 1) = \sum_i u_i$, where u_i is an element of an indecomposable direct summand of $X_1 \otimes_B B'$. Then $\Delta_0(1 \otimes b') = \sum_i u_i b'$. Suppose $\Delta_0(1 \otimes b') = 0$ for some $b' \neq 0$, $b' \in B'$; then $u_i b' = 0$, hence $u_i b' B' = 0$ for all i. There exists clearly a minimal subideal r of b'B' such that

(6)
$$u_i r = 0 \quad \text{for all } i.$$

Since B is self-basic, B' is also self-basic and QF-3. Hence $r \subseteq B'f'$. It follows that $r \subseteq B$, for $B'f' = Be' \subseteq B$. Then (6) contradicts to that δ_0 is a monomorphism. Thus (5) must be exact.

COROLLARY 1.5. Let B and B' be QF-3 algebras as in Proposition 1.1. If B is properly contained in B', then

domi. dim
$$_{B'}B' \ge \text{domi. dim }_{B}B = 1$$
.

REMARK. The inequality of the above relation really holds. Let B, B' and B'' be subalgebras of full matrix ring K_{14} over a commutative field K such that the elements in the following table form K-basis respectively:

$$B: e_1 = c_{11} + c_{22} + c_{33}, \quad e_2 = c_{44} + c_{55}, \quad e_3 = c_{66} + c_{77},$$

$$e_4 = c_{88} + c_{99} + c_{10,10}, \quad e_5 = c_{11,11} + c_{12,12},$$

$$e_6 = c_{13,13} + c_{14,14}, \quad c_{11,1} + c_{12,3}, \quad c_{13,1} + c_{14,2}, \quad c_{51}, \quad c_{71}, \quad c_{10,1}, \quad c_{94}$$

$$+ c_{10,5}, c_{3,4}, \quad c_{12,4}, \quad c_{8,6} + c_{10,7}, \quad c_{26}, \quad c_{14,6}, \quad c_{12,9}, \quad c_{14,8}, \quad c_{10,11}, \quad c_{10,13}.$$

B'': annexing elements $c_{7,11}, c_{5,11}, c_{7,13}, c_{5,13}$ to the table of B,

B': annexing elements c_{39} , c_{28} to the table of B''. Here $c_{i,j}$ denotes the matrix with 1 in the (i,j)-position and zero elsewhere. Then domi. dim $_BB$ = domi. dim $_{B''}B''$ = 1 and domi. dim $_{B''}B'$ = 3.

REMARK. The dominant dimension of a QF-3 algebra which is isomorphic to an endomorphism algebra of a fully faithful module is not necessarily larger than 1 (cf. the example of Remark of Theorem 1.9).

Consider the enveloping algebra $B^e = B \otimes_K B^0$ of B, where B^0 is the opposite algebra of B. Then B may be regarded to be a right B^e -module by the following

definition: $a \cdot b \cdot c = b(c \otimes_K a^0)$, for $a, b, c \in B$ and $a^0 \in B^0$. It was shown in [11] that domi. dim $B^0 B \ge 1$ if and only if B is QF-3. In this case B^0 is also QF-3 and its unique minimal faithful right B^0 -ideal is isomorphic to $eB \otimes_K e'^0 B^0$.

Similarly as Theorem 1.4 we have

THEOREM 1.6. If domi. dim $_{B^{\bullet}}B > 1$, then B = B'.

Proof. Let $0 \to B \to^{\gamma_0} Y_1$ be an exact sequence, where Y_1 is isomorphic to a direct sum of *n*-copies of $eB \otimes e'^0B^0$. Then by Lemma 1.3 we have only to prove that $0 \to B \otimes_{B^e}(B')^e \to {}^{\Delta_0} Y \otimes_{B^e}(B')^e$ is also exact, because if it is proved, $B \approx B \otimes_{B^e}(B')^e$ and consequently B = B'. Since any element of $B \otimes_{B^e}(B')^e$ is expressed by $1 \otimes \beta$ for a suitable element β of $(B')^e$, we may take $1 \otimes \beta$ as an element of Ker Δ_0 . Let D be a simple subideal of $\beta \cdot (B')^e$. Then $1 \otimes D \subseteq \text{Ker } \Delta_0$. We shall show $D(e' \otimes e^0) = D$, where $e' \otimes e^0 \in (B')^e = B' \otimes_K (B')^0$. Any simple ideal of B' is monomorphic to $eB' \otimes_K (B'e')^0 = eB \otimes_K (B_{e'})^0$ and hence monomorphic to $e \cdot 1(N') \otimes_K e'^0 \cdot l(N'^0)$, where N' and $(N')^0$ are the radicals B' and $(B')^0$, and 1(N') and $1((N')^0)$ are the left annihilators of N' and $(N')^0$ in B' and $(B')^0$ respectively. Denoting $\overline{B'} = B'/N', \overline{(B^0)} = (B')^0/(N')^0$, we have $e \cdot 1(N') \otimes e'^0$ $\cdot 1((N')^0) \approx \bar{e}' \overline{B'} \otimes_K e^{\overline{0}(B')^0}$. On the other hand the bottom Loewy constituent of $\bar{e}' \overline{B'} \otimes_K e^{\overline{0}(B')^{0}}$ is isomorphic to the top Loewy constituent of $\bar{e}' \overline{B'} \otimes_K e^{\overline{0}(B')^{0}}$, since $\overline{B'} \otimes_{\kappa} (\overline{B'})^0$ is almost symmetric. Thus we obtain $D(e' \otimes e^0) = D$. Now let γ be an element of D and express $\gamma = \sum_{\nu} b_{\nu} \otimes c_{\nu}^{0} \in B' \otimes_{K} (B')^{0}$, $b_{\nu} \in B'$ and $c_{\nu}^{0} \in (B')^{0}$. Then $\gamma = \gamma(e' \otimes e^0) = \sum_{\nu} b_{\nu} e' \otimes c_{\nu}^0 e^0$. Here we notice $b_{\nu} e' \in Be'$ and $c_{\nu}^0 e^0 \in B^0 e^0$ because B'e' = Be' and $(B')^0e^0 = B^0e^0$. Then it follows that

$$\Delta_0(1 \otimes \gamma) = \Delta_0 \left(\left(\sum_{\nu} b_{\nu} e^{\prime} \otimes c_{\nu}^0 e^0 \right) \otimes (1 \otimes 1^0) \right)$$
$$= \delta_0 \left(\sum_{\nu} b_{\nu} e^{\prime} \otimes c_{\nu}^0 e^0 \right) \otimes (1 \otimes 1^0) \neq 0,$$

where $1 \otimes 1^0$ is the unit of $(B')^e$. But this contradicts $1 \otimes \gamma \in \text{Ker } \Delta_0$. This completes the proof.

COROLLARY 1.7. Let B and B' be QF-3 algebras as in Proposition 1.1. If B is a proper subalgebra of B', then domi. dim $_{B^o}B = 1$.

REMARK. Consider the algebra A being fixed. Then so far as we estimate the upper bound of dominant dimensions of B's over QF-algebras B^e connected with A, we have only to consider such QF-3 algebras B' that B' consists of all A-endomorphisms of fully faithful A-modules.

Let A be an algebra, M_0 a fully faithful left A-module and M a left A-module. Denote by B the left A-endomorphism algebra of $M_0 \oplus M$ considered as a right operator domain and similarly denote by B_0 the left A-endomorphism algebra of M_0 as a right operator domain. Let N be a right B-module and

$$(7) 0 \longrightarrow N \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_n$$

an exact sequence with X_k , $1 \le k \le n$, which is a projective, injective right B-module. Without loss of generality we may assume that X_k is isomorphic to a direct sum of n_k -copies of eB, where $M_0 \oplus M \approx eB$ and e is an idempotent of B. The projection $f: M_0 \oplus M \to M_0$ may be considered as an idempotent of B and it holds $B_0 = fBf$ and $M_0 = eBf$. Then multiplying (7) with f on the right hand we obtain

$$(8) 0 \longrightarrow Nf \longrightarrow X_1 f \longrightarrow X_2 f \longrightarrow \cdots \longrightarrow X_n f,$$

where $X_k f$ is a direct sum of n_k -copies of eBf.

Now we shall divide two cases.

Case 1. We shall take a right B-module B as N; then in place of (7) and (8) we obtain

$$(7') 0 \longrightarrow B \xrightarrow{\delta_0} X_1 \xrightarrow{\delta_1} X_2 \xrightarrow{\delta_2} \cdots \xrightarrow{\delta_{n-1}} X_n,$$

and

$$(8') 0 \longrightarrow Bf \longrightarrow X_1 f \longrightarrow X_2 f \longrightarrow \cdots \longrightarrow X_n f.$$

eBf is right fBf-projective, injective and $Bf \approx fBf \oplus (1-f)Bf$. Hence we have

$$0 \longrightarrow B_0 \longrightarrow X'_1 \longrightarrow X'_2 \longrightarrow \cdots \longrightarrow X'_n,$$

where X_1 is the injective hull of $\delta_0(B_0)$ and X_k' is the injective hull of $\delta_{k-1}(X_{k-1}')$. Here we notice that if $X_j' = 0$ for some j, then B_0 is projective, injective B_0 -module for X_j is B_0 -projective, and this implies B_0 is quasi-Frobenius.

Case 2. In this case we shall take B^e -module B as N; then we have to take in place of the ring B, B_0 , projective, injective right B-modules X_i and the idempotent f, $B^e = B \otimes_K B^0$, $B_0^e = fBf \otimes_K (fBf)^0$, projective, injective right B^e -modules Y_i and an idempotent $(f \otimes_K f^0)$ of B^e . Then in place of (8) we obtain an exact sequence

$$(8'') \quad \blacksquare. \ 0 \longrightarrow B(f \otimes f^0) \longrightarrow Y_1(f \otimes f^0) \longrightarrow \cdots \longrightarrow Y_n(f \otimes f^0)$$

of B^e -homomorphisms, where $B(f \otimes f^0) = fBf = B_0$. Here we notice that if (8") is split, B_0 is B_0^e -projective (injective) and B_0 is separable. Thus we have proved

THEOREM 1.8. Let A be an algebra, M_0 a fully faithful left A-module and M a left A-module. Denote by B the left A-endomorphism algebra of $M_0 \oplus M$ considered as a right operator domain and similarly denote by B_0 the left A-endomorphism algebra of M_0 as a right operator domain. If B_0 is not quasi-Frobenius, then

domi. dim
$$_B B \leq$$
 domi. dim $_{B_0} B_0$.

THEOREM 1.9. Let B and B_0 be QF-3 algebras as in Theorem 1.8. If B_0 is not separable, then domi. dim $B_0 \in B \subseteq A$

REMARK. The inequality of Theorem 1.8 really holds for the following example. Let A be a subalgebra of the full matrix K_4 over a commutative field K such that the elements

$$e_1 = c_{11}, \qquad e_2 = c_{22} + c_{33} + c_{44}, c_{21}, c_{31}$$

form a K-basis. Take $M_0 \approx Ae_1 \oplus Ae_2 \oplus (e_2A)^* \oplus (e_1A)^*$ and $M \approx Ae_1/Ac_{21}$ in Theorem 1.8. Then we have domi. dim $B_0 = 0$ and domi. dim $B_0 = 0$.

A fully faithful left A-module M_0 is said to be minimal if each indecomposable summand of M_0 is either projective or injective and not isomorphic to others.

Let M_0 be a minimal fully faithful left A-module. Then the endomorphism algebra of M_0 is quasi-Frobenius if and only if A is a quasi-Frobenius algebra. Thus, to estimate the upper bound of dominant dimensions of modules B_B and B_{B^e} for a fixed algebra A we must divide the class of QF-3 algebras which are not quasi-Frobenius into two subclasses according as whether

- (i) A is a quasi-Frobenius algebra, or
- (ii) A is not a quasi-Frobenius algebra,

and by Theorems 1.8 and 1.9 we have only to consider QF-3 algebras B in each subclass such that

- (i) B is the endomorphism algebra of $M_0 \oplus M$, where M_0 is a minimal faithful left A-module and M is an indecomposable, not projective, left A-module,
- (ii) B is the endomorphism algebra of M_0 , where M_0 is a minimal fully faithful left A-module.
- 2. **Dominant dimension and injective dimension.** Let M be a right B-module. Suppose the dominant dimension of M is infinite, that is to say, we have a minimal injective resolution of $M: 0 \to M \to X_1 \to X_2 \to \cdots \to X_n \to \cdots$, where every X_k is a projective right B-module. If the injective dimension of M is finite, i.e., $X_{n-1} = 0$ for some n, then we obtain $X_{n-1} \approx \operatorname{Im} \delta_{n-1} \oplus \operatorname{Ker} \delta_{n-1}$ and obtain successively $X_{k-1} \approx \operatorname{Im} \delta_{k-1} \oplus \operatorname{Ker} \delta_{k-1}$ for X_k is projective, and consequently M is projective and injective. Thus we have

PROPOSITION 2.1. Let M be a right B-module. Assume domi. $\dim_B M = \infty$ and inj. $\dim_B M < \infty$. Then M is projective and injective.

COROLLARY 2.2. If M is not a projective injective right B-module, then from condition inj. dim $_BM<\infty$ it follows that domi. dim $_BM<\infty$.

Since self injective algebras are quasi-Frobenius, we obtain

COROLLARY 2.3. Let B be a QF-3 algebra which is not quasi-Frobenius. If inj. dim $_BB < \infty$, then domi. dim $_BB < \infty$.

REMARK. As an example of a QF-3 algebra which is not quasi-Frobenius and whose injective dimension $= \infty$ we can show a subalgebra B of the full matrix ring K_{10} over a commutative field K such that elements

$$e_1 = c_{11} + c_{22} + c_{33}, \quad e_2 = c_{44} + c_{55} + c_{66}, \quad e_3 = c_{77} + c_{88} + c_{99},$$

 $e_4 = c_{10,10}, c_{61}, c_{81} + c_{92}, c_{10,1}, c_{24} + c_{35}, c_{94}, c_{27}, c_{57} + c_{68}, c_{6,10}$

form a K-basis.

COROLLARY 2.4. If a QF-3 algebra B is not separable, then the condition $0 < \text{inj. dim }_{B^o} B < \infty$ implies domi. $\dim_{B^o} B < \infty$.

Let B be a QF-3 algebra and eB a minimal faithful right ideal, where e is an idempotent of B. There exists an idempotent e' of B such that $Be' \approx \operatorname{Hom}_K(eB, K)$. Then $\operatorname{Hom}_K(eBe, K)$ is left eBe-isomorphic to eBe'. Since eBe is a projective, faithful right eBe-module, eBe' is an injective, faithful left eBe-module and similarly eBe' is an injective, faithful right e'Be'-module. It is well known that by the contravariant functor $\operatorname{Hom}(\ ,eBe')$ the duality holds between the category of finitely generated left eBe-modules and one of finitely generated right e'Be'-modules.

Now let β be a right B-homomorphism: $eB \to eB$. Then multiplying with the idempotent e' on the right-hand side we have right e'Be'-homomorphism $\alpha: eBe' \to eBe'$. Conversely for a right e'Be'-homomorphism $\gamma: eBe' \to eBe'$ we have a right B-homomorphism $\text{Hom}(Be', \gamma)$: $\text{Hom}_{e'Be'}(Be', eBe') \to \text{Hom}_{e'Be'}(Be', eBe')$ as follows: $(\text{Hom}(Be', \gamma)(\phi))(x) = \gamma(\phi(x))$ for $\phi \in \text{Hom}(Be', eBe')$, $x \in Be'$.

Further it holds $\operatorname{Hom}_{e'Be'}(Be', eBe') \approx \operatorname{Hom}_{e'Be'}(Be', \operatorname{Hom}_{K}(e'Be', K))$ $\approx \operatorname{Hom}_{K}(Be' \otimes_{e'Be'} e'Be', K) \approx \operatorname{Hom}_{K}(Be', K) \approx eB.$

Now we shall prove

PROPOSITION 2.5. Let α and β be just introduced homomorphisms. Then there exists an isomorphism σ : $\operatorname{Hom}_{e'Be'}(Be', eBe') \to eB$ such that the following diagram is commutative:

$$\begin{array}{ccc}
\operatorname{Hom}_{e'Be'}(Be', eBe') & \xrightarrow{\operatorname{Hom}(Be', \alpha)} & \operatorname{Hom}_{e'Be'}(Be', eBe') \\
\downarrow & & & & & & \\
\downarrow & & & & & \\
eB & \xrightarrow{\beta} & & & & & \\
\end{array}$$

Proof. To begin with we identify eB with $\operatorname{Hom}_{e'Be'}(Be', eBe')$. Then by the assumption the following diagram is commutative:

$$\begin{split} \theta \in \operatorname{Hom}_{e'Be'}(Be', eBe') & \longrightarrow \beta(\theta) \in \operatorname{Hom}_{e'Be'}(Be', eBe') \\ \rho & \downarrow \\ \theta \circ e' \in \operatorname{Hom}_{e'Be'}(e'Be', eBe') & \longrightarrow \beta(\theta \circ e') \in \operatorname{Hom}_{e'Be'}(e'Be', eBe'), \end{split}$$

where

$$(\rho\theta)(e'xe') = (\theta \circ e')(xe')$$

$$= \theta(e'xe') \text{ for } xe' \in Be' \text{ and } \theta \in \text{Hom}(Be', eBe').$$

In this case $\operatorname{Hom}(Be', eBe')$ is defined to be a left eBe-module by $(b*\theta)(xe') = b(\theta(xe'))$, for $b \in eBe$ and $xe' \in Be'$ and $\operatorname{Hom}(Be', eBe')$ is fully faithful as a left eBe-module. Hence the right B-endomorphism algebra of $\operatorname{Hom}(Be', eBe')$ is eBe and for a right B-homomorphism β there exists an element b_{β} of eBe such that $\beta(\theta) = b_{\beta} * \theta$. Thus we have

$$(\beta(\theta) \circ e')(xe') = \beta(\theta \circ e')(xe')$$

$$= \beta(\theta(e'xe'))$$

$$= (b_{\beta} * \theta)(e'xe')$$

$$= b_{\beta}(\theta(e'xe')).$$

On the other hand, by a correspondence $\tau:\theta\circ e'\leftrightarrow(\theta\circ e')(e')$, $\operatorname{Hom}_{e'Be'}(e'Be',eBe')\approx eBe'$. Hence β induces e'Be'-homomorphism $\alpha':eBe'\rightarrow eBe'$ such that $\alpha'((\theta\circ e)(e'))=b_{\beta}(\theta\circ e')(e')$.

Then it is sufficient to show that α' induces β .

Let $\eta \in \operatorname{Hom}_{e'Be'}(Be',eBe')$; then $\eta(xe') \in eBe'$. There exists $\theta \in \operatorname{Hom}_{e'Be'}(Be',eBe')$ such that $\eta(xe') = (\theta \circ e')(e')$, because we have only to put $\theta \circ e' = \tau^{-1}(\eta(xe'))$. Then we have

$$(\operatorname{Hom}(Be',\alpha')(\eta))(xe') = \alpha'\eta(xe')$$

$$= \alpha'((\theta \circ e')(e'))$$

$$= b_{\beta}((\theta \circ e')(e'))$$

$$= b_{\beta}(\eta(xe'))$$

$$= (b_{\beta} * \eta)(xe')$$

$$= \beta(\eta)(xe'), \text{ for all } xe' \in Be'.$$

This completes the proof.

COROLLARY 2.6. Let B be a QF-3 algebra. Let M_i , i=1,2, be a submodule of X_i respectively and X_i free right B-modules. Let ϕ be a right B-homomorphism: $M_1 \rightarrow M_2$ and ψ a right e'Be'-homomorphism: $M_1e' \rightarrow M_2e'$ defined by $\psi(xe') = \phi(x) \cdot e'$ for $x \in M_1$. Then there exists a natural isomorphism σ such that the following diagram is commutative:

Proof. Since B is a QF-3 algebra, for a suitable integer n, X_i can be embedded in a direct sum X of n-copies of eB and we have a right B-homomorphism $\Phi: X \to X$ such that the following diagram is commutative:

$$\begin{array}{ccc}
0 & & & 0 \\
\downarrow & & & \downarrow \\
M_1 & \xrightarrow{\Phi} & M_2 \\
\downarrow & & & \downarrow \\
X_1 & \xrightarrow{\Phi} & X_2.
\end{array}$$

Then from Proposition 2.5 the conclusion follows.

Let

$$(9) 0 \longrightarrow M \xrightarrow{\beta_0} X_1 \xrightarrow{\beta_1} X_2 \xrightarrow{\beta_2} \cdots \longrightarrow X_n$$

be an exact sequence of right B-homomorphisms β_p , where X_p , $1 \le p \le n$, are projective, injective right B-modules. By multiplying X_p with e' on the right-hand side we have an exact sequence of right e'Be'-homomorphisms:

$$(10) 0 \longrightarrow Me' \xrightarrow{\alpha_0} X_1 e' \xrightarrow{\alpha_1} X_2 e' \xrightarrow{\alpha_2} \cdots \longrightarrow X_n e',$$

with $X_p e'$ being injective right e'Be'-modules. Then from Proposition 2.5 and Corollary 2.6 there exist natural isomorphisms σ_i , $i = 0, 1, 2, \dots, n$:

$$0 \longrightarrow M \longrightarrow X_1 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_n$$

$$(11) \quad \sigma_0 \downarrow \qquad \qquad \sigma_1 \downarrow \qquad \qquad \sigma_n \downarrow$$

$$0 \longrightarrow \text{Hom}(Be', Me') \xrightarrow{\text{Hom}(Be', \alpha_0)} \text{Hom}(Be', X_1e') \xrightarrow{\text{Hom}(Be', \alpha_1)} \cdots \longrightarrow \text{Hom}(Be', X_ne')$$

If (9) is minimal in the sense that $\text{Im } \beta_i \supseteq \text{ the socle of } X_{i+1}$, then (10) is minimal in the sense of that $\text{Im } \alpha_i \supseteq \text{ the socle of } X_{i+1}e'$. We have now proved

PROPOSITION 2.7. Let B be a QF-3 algebra with Be' and eB as unique minimal faithful left and right B-modules respectively. Let M be a right B-module. Then from the assumption $0 < \inf$. r. $\dim_{e'Be'}Me' < \infty$, it follows that

domi.
$$\dim_B M \leq \text{inj. r. } \dim_{e'Be'} Me' + 1.$$

THEOREM 2.8. Let B be a QF-3 algebra as in Proposition 2.7. Then

domi.
$$\dim_B B \leq \text{inj. r. } \dim_{e'Be'} Be' + 1 = \text{proj. l. } \dim_{eBe} eB + 1$$
,

provided $0 < \text{inj. r. } \dim_{e'Be'}Be' < \infty$.

COROLLARY 2.9. Let A be an algebra which is not quasi-Frobenius. If the projective dimension of a fully faithful injective left A-module is finite, then the dominant dimension of QF-3 algebra B which is connected with A is also finite.

THEOREM 2.10. Let B be a QF-3 algebra as in Proposition 2.7. From the assumption $0 < \dim_{eBe} (= \text{proj. } \dim_{eBe^*} eBe) < \infty$ it follows that domi. $\dim_{B^e} B \leq \dim_{eBe} + 1$.

Proof. Let us consider again B to be a right B^e -module. Then in place of e', e'Be' we can take $e' \otimes_K e^0$ and $e'Be' \otimes_K e^0B^0e^0$. Hence from the assumption 0 < inj. r. $\dim_{e'Be' \otimes_e^0B^0e^0} eBe' < \infty$ it follows that domi. $\dim_{B^e} B < \text{inj.}$ r. $\dim_{e'Be' \otimes_e^0B^0e^0} eBe' + 1$. On the other hand, eBe' is left eBe-isomorphic to $\operatorname{Hom}_K(eBe, K)$ and right e'Be'-isomorphic to $\operatorname{Hom}_K(e'Be', K)$. Hence $\operatorname{Hom}_K(eBe', K)$ is right eBe-isomorphic to eBe and is left e'Be'-isomorphic to e'Be'. Thus inj. r. $\dim_{e'Be' \otimes_{e^0B^0e^0}} eBe' = \operatorname{proj.} 1$. $\dim_{eBe \otimes_{e^0B^0e^0}} eBe = \dim_{eBe}$. And we have proved domi. $\dim_{B^e} B \leq \dim_{eBe} + 1$.

3. In case A is generalized uni-serial. Throughout this section we assume A is a generalized uni-serial algebra and B is an endomorphism algebra of a fully faithful A-module. We shall prove that if B is not quasi-Frobenius, the dominant dimension of B, considered as a right B-module, is finite. Since domi. dim $_{B^e}B \leq \text{domi. dim }_{B}B$, this implies Nakayama's conjecture holds for the same situation.

Let B be a QF-3 algebra and eB and Be' unique minimal faithful right ideal and unique minimal faithful left ideal, respectively.

Let

$$(12) \cdots \longrightarrow X_{i-1} \xrightarrow{\delta_{i-1}} X_i \xrightarrow{\delta_i} X_{i+1} \xrightarrow{\delta_{i+1}} \cdots$$

be an exact sequence of right e'Be'-homomorphisms with X_i being isomorphic to a direct sum of n_i -copies of eBe'. As was shown in §2 we have a sequence of right B-homomorphisms

(13)
$$\Delta_{i-1} = \operatorname{Hom}(Be', \delta_{i-1}) \qquad \Delta_i = \operatorname{Hom}(Be', \delta_i) \\ \cdots \to \operatorname{Hom}(Be', X_{i-1}) \longrightarrow \operatorname{Hom}(Be', X_i) \longrightarrow \operatorname{Hom}(Be', X_{i+1}) \to \cdots.$$

This sequence, however, is not always exact. For the sake of (13) being exact what condition does (12) satisfy?

Let ϕ be an element of $\operatorname{Ker} \Delta_i$, i.e., $\delta_i \phi$ is the zero mapping. On the other hand, let ψ be any element of $\operatorname{Im} \Delta_{i-1}$. Then there exists a homomorphism $\Psi \colon Be' \to X_{i-1}$ such that $\psi = \delta_{i-1} \Psi$. Since it holds that $\operatorname{Im} \delta_{i-1} = \operatorname{Ker} \delta_i$ and $\operatorname{Im} \Delta_{i-1} \subseteq \operatorname{Ker} \Delta_i$, we have

PROPOSITION 3.1. In order that $\operatorname{Ker} \Delta_i = \operatorname{Im} \Delta_{i-1}$, it is necessary that δ_{i-1} satisfies the following condition: For a homomorphism $\phi \colon Be' \to \operatorname{Im} \delta_{i-1}$, there always exists a homomorphism $\psi \colon Be' \to X_{i-1}$ such that the following diagram is commutative:

(14)
$$\psi \qquad \qquad \downarrow \delta_{i-1} \\ Be' \xrightarrow{\phi} \operatorname{Im} \delta_{i-1}.$$

REMARK. Since $Be' \approx (1 - e')Be' \oplus e'Be'$ and e'Be' is e'Be'-projective, (14) can be replaced by the following diagram:

$$\begin{array}{c|c} X_{i-1} \\ \psi & \delta_{i-1} \\ (1-e')Be' & \longrightarrow \operatorname{Im} \delta_{i-1} . \end{array}$$

Hereafter we assume $eBe\ (=A)$ is a generalized uni-serial algebra. And we assume the following sequence of right B-homomorphisms:

$$0 \longrightarrow B \xrightarrow{\Delta_0} Z_1 \xrightarrow{\Delta_1} \cdots \longrightarrow Z_n \xrightarrow{\Delta_n} \cdots$$

is infinite and exact with Z_i being isomorphic to n_i -copies of eB. As is shown in §2, we have an exact sequence of e'Be'-homomorphisms

$$0 \longrightarrow Be' \xrightarrow{\delta_0} Z_1e' \xrightarrow{\delta_1} \cdots \xrightarrow{\delta_n} Z_ne' \longrightarrow \cdots$$

Then from Proposition 2.5 there exists a natural equivalence σ :

Let us impose further an assumption that B is not quasi-Frobenius. Then there exists at least an indecomposable summand S of Be' which is not injective as a right e'Be'-module and for S we have an exact sequence of homomorphisms

$$(16) 0 \longrightarrow S \xrightarrow{\tau_0} Y_1 e' \xrightarrow{\tau_1} \cdots \longrightarrow Y_n e' \xrightarrow{\tau_n} \cdots,$$

where τ_i are minimal and Y_ie' is nonzero, indecomposable summand of Z_ie' , for S is not injective and e'Be' is generalized uni-serial. By (15),

$$(17) 0 \longrightarrow \operatorname{Hom}(Be', S) \longrightarrow \operatorname{Hom}(Be', Y_1e') \longrightarrow \cdots$$

must be exact. But this is a contradiction.

To show the reason why this is a contradiction, we shall divide our discussion.

(i) e'Be' is quasi-Frobenius.

In this case e' = e, (1 - e')Be' = (1 - e)Be and from Theorem 1.8 we may assume that (1 - e)Be is indecomposable and S = (1 - e)Be. Since the sequence (16) is infinite, there exist two integers i and i + k such that the diagram

$$0 \longrightarrow Y_{i}e \longrightarrow Y_{+k}e \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Ker} \tau_{i} \longrightarrow \operatorname{Ker} \tau_{i+k} \longrightarrow 0$$

$$0 \longrightarrow 0$$

is commutative, where all row and column sequences of homomorphisms are exact.

Since all $Y_1e, Y_2e, \dots, Y_{i+k}e$ are projective, $S = \operatorname{Im} \tau_{i+p}$ for some $p, 1 \leq p \leq k$, because (16) is minimal. Then for the following d_1 am

$$0 \longrightarrow (1-e)Be \xrightarrow{\phi} \operatorname{Im} \tau_{i+p} \approx S \approx (1-e)Be \longrightarrow 0,$$

there is no homomorphism $\psi:(1-e)Be \to Y_{i+p}e$ such that $\tau_{i+p}\psi=\phi$, because otherwise $(\phi^{-1}\delta_{i+p})\psi$ is an isomorphism: $(1-e)Be \to (1-e)Be$ and (1-e)Be is isomorphic to a direct summand of $Y_{i+p}e$. Thus S is injective. But this contradicts the selection of S. It follows from Proposition 3.1 that (17) is not exact. We arrive at the above stated contradiction.

(ii) e'Be' is not quasi-Frobenius.

In this case we may assume by Theorem 1.8 that every indecomposable injective right e'Be'-module which is not projective is isomorphic to a direct summand of (1 - e')Be'. We can select S among them.

(a) If we have in (16) the following commutative diagrams for all j, $1 \le j \le i$,

$$0 \longrightarrow Y_{j}e' \longrightarrow Y_{j+k}e' \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow$$

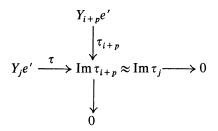
$$0 \longrightarrow \operatorname{Ker}\tau_{j} \longrightarrow \operatorname{Ker}\tau_{j+k} \longrightarrow 0$$

in which rows are exact and column mappings are injections, then as in (i) we have a diagram

$$0 \longrightarrow S \xrightarrow{\phi} \operatorname{Im} \tau_{i+p} \longrightarrow 0,$$

in which there exists no homomorphism $\psi: S \to Y_{i+p}e'$ such that $\tau_{i+p}\psi = \phi$, for otherwise $S \approx Y_{i+p}e'$ and $\operatorname{Im} \tau_{i+p-1} = 0$, which contradicts (11). So we arrive again at the above contradiction.

(b) Now, the case remains where we have the next diagram:



where Y_je' , $1 \le jl < i$, is injective but not projective and not isomorphic to Y_{i+p} . Hence Y_je' is considered as a direct summand of (1-e')Be'. Since e'Be' is generalized uni-serial, we may assume there exists an epimorphism $\theta: Y_{i+p}e' \to Y_je'$ such that $\tau_j\theta = \tau_{i+p}$. Then we know that there exists no homomorphism $\psi: Y_je' \to Y_{i+p}$ such that $\tau_{i+p}\psi = \tau_j$, for otherwise $\tau_j\theta\psi(x) = \tau_j(x)$ holds for all $x \in Y_je'$; then $Y_je' = \theta\psi(Y_je') + \operatorname{Ker}\tau_j$. But Y_je' is uni-serial, and hence $\theta\psi$ must be an isomorphism. It follows that Y_je' is isomorphic to a direct summand of $Y_{i+p}e'$, and consequently $Y_je' \approx Y_{i+p}e'$. But this is a contradiction. By Proposition 3.1, (17) is not exact. Thus in this case too we arrive at the first pointed contradiction.

THEOREM 3.2. Let A be a generalized uni-serial algebra and B a QF-3 algebra connected with A. If B is not quasi-Frobenius, then the dominant dimension of B is finite.

REMARK. The class of QF-3 algebras, each of them obtained as the endomorphism algebra of a fully faithful module over a generalized uni-serial algebra, contains properly the class of generalized uni-serial algebras. In fact, the example at the remark of Theorem 1.8. is an endomorphism algebra of a fully faithful module over a generalized uni-serial algebra, but not generalized uni-serial.

4. Isomorphisms between cohomology groups and homology groups. To begin with we shall intend to generalize the notion "Nakayama's automorphism of Frobenius algebra." Let B be a QF-3 algebra with eB with the unique minimal faithful right B-ideal. Then the unique minimal faithful left B-ideal Be' is B-isomorphic to $Hom_K(eB,K)$ and by an identification of Be' with $Hom_K(eB,K)$, eB and Be' form an orthogonal pair (inner product) with respect to K: for any element $x \in eB$ and any element $y \in Be'$ there corresponds an element (x,y) of K, and (xb,y) = (x,by) holds for any element $b \in B$.

Then for an element ρ of eBe, $(\rho x, y) = (\rho, xy)$ holds, where $xy \in eBe'$. In this pairing it is immediate that eBe and eBe' also form an orthogonal pair, and

since K is contained in the center of B this makes it possible for us to identify every element ρ of eBe with an element of $\operatorname{Hom}_K(eBe',K)$, that is to say, for any elements x, y there exists an element ρ' of e'Be' such that

$$(\rho, xy) = (xy, \rho').$$

Since in the right pairing eBe' and e'Be' form an orthogonal pair, the correspondence: $\rho \to \rho'$ is unique and gives ring-isomorphism σ : $eBe \to e'Be'$. When B is a Frobenius algebra, σ is Nakayama's automorphism. It is known that σ is determined uniquely up to inner automorphisms of e'Be'.

Let l_1, l_2, \dots, l_k be a left K-basis of eB and r_1, r_2, \dots, r_k its dual right K-basis of Be'; that is to say, in the above pairing $(l_i, r_k)_k = \delta_{ik}$ holds. Then, if $\rho l_i = \sum_{i=1}^k \lambda_{ij} l_j$ for $\rho \in eBe$, we have $r_j \rho' = \sum_{i=1}^k r_i \lambda_{ij}$.

Next we shall define the notion "Spur" in the sense of Kasch. Let M be a left B-module and f an element of $\operatorname{Hom}_K(M,K)$. The Spur f is defined to be the following mapping: $M \to Be'$ such that

Spur
$$f: M \ni x \to \sum_{i=1}^{k} r_i f(l_i x) \in Be'$$
.

It is easy to show that Spur $f \in \text{Hom }_B(M, Be')$, and

Spur
$$(f\rho)(x) = (\text{Spur } f)(x) \rho'$$
 for $\rho \in eBe$ and $\rho' \in e'Be'$.

Now, similarly as Kasch we can prove several propositions for preparation.

PROPOSITION 4.1. Let epe be an element of $\operatorname{Hom}_K(Be,K)$ defined by $e\rho e(x) = (e\rho e, x)$ for $x \in Be'$. Then the correspondence:

$$e\rho e \rightarrow \operatorname{Spur} e\rho e \in \operatorname{Hom}_{R}(Be', Be')$$

gives the ring-isomorphism σ .

We shall omit the proof (cf. Kasch [4, Hilfssatz 1]).

Let X be a direct sum of m-copies of $Be': X = \bigoplus_{j=1}^m Be'x_j$ and $\sum_{j=1}^m \gamma_j x_j$, $\gamma_j \in Be'$ be an element of X. Then we have

PROPOSITION 4.2. Let X^* be a direct sum of m-copies of $eBe: X^* = \bigoplus_{j=1}^m \varepsilon_j eBe$, $\varepsilon_j eBe \approx eBe$. And by $\sum_{j=1}^m \varepsilon_j \rho_j$, $\rho_j \in eBe$, we shall denote an element of $\operatorname{Hom}_K(X,K)$ defined by

$$\left(\sum_{k} \varepsilon_{k} \rho_{k}\right) \left(\sum_{j} \gamma_{j} x_{j}\right) = \sum_{k} (\rho_{k}, \gamma_{k}).$$

Then the mapping $X^* \to \operatorname{Hom}_{B}(X, Be')$ defined by

$$X^* \ni f \to \text{Spur } f \in \text{Hom }_{R}(X, Be')$$

gives a semi-linear isomorphism connected with σ .

We omit the proof (cf. Kasch [4, Hilfssatz 2]).

From left B-module N a left e'Be'-module e'N is obtained by restricting its operator domain B to e'Be'. Now by $e'N^{\theta}$ we shall denote an additive group having the following one-one correspondence with $e'N: e'N^{\theta} \ni y \to {}^{\theta}y \in e'N$. If we shall define the multiplication \circ with elements of eBe as follows: $\rho \circ y = \rho^{\sigma} \cdot y$, where σ is Nakayama's ring-isomorphism, then N^{θ} is considered to be a left eBe-module.

For given left *B*-modules *M* and *N* we shall define a homomorphism ϕ : $\operatorname{Hom}_{K}(eM,K) \otimes_{eBe} e'N^{\theta} \ni f \otimes y \xrightarrow{\theta} (M \ni x \to (\operatorname{Spur} f)(x)y) \in \operatorname{Hom}_{B}(M,N)$. Then it is proved similarly as in [4] that ϕ is functorial in *M* and *N*.

THEOREM 4.3. Let X be a direct sum of m-copies of Be'. Then $\operatorname{Hom}_K(eX,K) \approx X^*$ and ϕ , defined by

$$\phi: X^* \otimes e'N^{\theta} \ni f \otimes y^{\theta} \to (X \ni x \to (\text{Spur } f)(x)y) \in \text{Hom }_{B}(X, N),$$

is an isomorphism.

Proof. First we shall show ϕ is a monomorphism. Let $\phi(f \otimes y^{\theta}) = 0$; this means (Spur f)(x) y = 0 for all x. Denote f by $\sum_{j=1}^{m} \varepsilon_{j} \rho_{j}$, $\rho_{j} \in eBe$ and x by $\sum_{j} b_{j} e' x_{j}$, $b_{j} e' \in Be'$. Then $0 = (\operatorname{Spur} f)$ ($e' x_{j}$) $y = (\operatorname{Spur} \sum \varepsilon_{j} \rho_{j})$ ($e' x_{j}$) $y = (\operatorname{Spur} \varepsilon_{j} \rho_{j})$ ($e' x_{j}$) $y = (e' \rho_{j}^{\sigma}) y$. Hence $f \otimes y^{\theta} = \sum \varepsilon_{j} \rho_{j} \otimes y^{\theta} = \sum \varepsilon_{j} \otimes (\rho_{j}^{\sigma} y)^{\theta} = 0$. This proves that ϕ is a monomorphism.

Next we shall show that ϕ is an epimorphism. Let f be any element of $\operatorname{Hom}_{B}(X,N)$. Then it suffices to prove

$$\phi\left(\sum_{j}\varepsilon_{j}e\otimes f(e'x_{j})\right)=f,$$

i.e.,

$$f(x) = \sum_{j} ((\text{Spur } \varepsilon_{j} e)(x)) f(e'x_{j}) \text{ for all } x \in X.$$

On the other hand, for $x = \sum_j b_j e' x_j$ we have $\sum_j ((\operatorname{Spur} \varepsilon_j e)(x)) f(e' x_j) = \sum_j ((\operatorname{Spur} \varepsilon_j e)(\sum_i b_i e' x_i)) f(e' x_j) = \sum_j (b_j e') f(e' x_j) = \sum_j f(b_j e' x_j) = f(\sum_j b_j e' x_j) = f(x)$. Thus the proof is completed.

Now we arrive at a place to prove

THEOREM 4.4. Let M and N be left B-modules. If domi. dim $_BM=n$ and domi. dim $_BHom_K(M,K)=m$, then

$$\operatorname{Tor}_{k}^{eBe}(\operatorname{Hom}_{K}(eM,K),e'N^{\theta}) \approx \operatorname{Ext}_{B}^{-(k+1)}(M,N).$$

Proof. Let

be a commutative diagram, where the row is exact with projective, injective left B-modules for $l \le m, k+1 \le n$, and σ and τ are epimorphism and monomorphism respectively. Without loss of generality X_i , $-n < i \le m$, may be assumed to be isomorphic to a direct sum of n_i -copies of Be'. Multiplying X_i with e on the left-hand side we obtain an exact sequence

$$(19) \qquad \begin{array}{c} \rightarrow eX_{1} \rightarrow \cdots \rightarrow eX_{1} \rightarrow eX_{0} \rightarrow eX_{-1} \rightarrow eX_{-2} \rightarrow \cdots \rightarrow eX_{-(k+1)} \rightarrow eX_{0} \\ eM \\ 0 \\ 0 \end{array}$$

of eBe-homomorphisms with eX_i injective eBe-modules. Taking the dual of M and X_i , $i = -n, \dots, m$, we obtain an exact sequence

$$(20) \xrightarrow{(eX)^*_{-(k+1)}} \cdots \rightarrow (eX_{-2})^* \rightarrow (eX_{-1})^* \rightarrow (eX_0)^* \rightarrow (eX_1)^* \rightarrow \cdots \rightarrow (eX_l)^* \rightarrow (eX_1)^* \rightarrow \cdots \rightarrow (eX_l)^* \rightarrow$$

of right eBe-homomorphisms with $(eX_i)^*$ projective right eBe-modules. Then from Theorem 4.3 it follows that

$$X_{i+1}^* \underset{a R a}{\otimes} e' N^{\theta} \approx \operatorname{Hom}_{B}(X_{-(i+1)}, N).$$

However, since we can take (18) and (20) as parts of complete projective resolutions of $_BM$ and $(\epsilon M)_{\epsilon Be}^*$ respectively, we obtain

$$\operatorname{Tor}_{i}^{eBe}((eM)^{*},e'N^{\theta}) \approx \operatorname{Ext}_{B}^{-(i+1)}(M,N).$$

This completes the proof.

Now, if we take $B \in B$ as M, then for a left B^e -module N we obtain

$$H_k^{eBe\otimes_{K}(e'Be')^0}((eBe')^*, e'Ne^{\theta}) \approx H_{Re}^{-(k+1)}(B, N).$$

Let η be a ring-isomorphism: $eBe \otimes_K (e'Be')^0 \to eBe \otimes_K (eBe)^0$ defined by $\eta(\rho \otimes \rho'^0) = \rho \otimes (\rho'^{\sigma^{-1}})^0$, where σ is Nakayama's ring-isomorphism. Then using $\eta, (eBe)^*$ and $e'N^\theta$ can be considered as left eBe^e -module and it is easy to show that

$$(eBe')^{*eBe^{\bullet}} \approx eBe$$

and $(\rho_1 \otimes \rho_2^0) x^{\theta} = \rho_1^{\sigma} x \rho_2^{\sigma}$ for $x \in \mathbb{N}$, $x^{\theta} \in e' N e^{\theta}$, ρ_1 , $\rho_2 \in eBe$.

THEOREM 4.5. Let B be a QF-3 algebra with eB and Be' as unique minimal faithful right and left ideals respectively and N a two sided B-module. If domi. dim $_{B^o}B = n$, then

$$H_k^{eBe}(eBe, e'Ne^{\theta}) \approx H_B^{-(k+1)}(B, N), \qquad 0 < k < n,$$

where the above groups denote the homology group of eBe with coefficients in N^{θ} and the cohomology group of B with coefficients in N respectively.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N.J., 1956.
 - 2. S. Eilenberg, Homological dimension and syzygies, Ann. of Math. (2) 64 (1956), 328-336.
 - 3. J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108.
- 4. F. Kasch, Dualitatseigenschaften von Frobenius-Erweiterungen, Math. Z. 77 (1961), 219-227.
- 5. Y. Kawada, Ageneralization of Morita's theorem concerning generalized uni-serial algebras, Proc. Japan. Acad. 34 (1958), 404-406.
- 6. K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo. Kyoiku Daigaku 6 (1958), no. 150, 83-142.
- 7. ———, Category-isomorphisms and endomorphisms rings of modules, Trans. Amer. Math. Soc. 103 (1962), 451-469.
- 8. T. Nakayama, On the complete cohomology of Frobenius algebras, Osaka Math. J. 9 (1957), 165-187.
- 9. —, Note on complete cohomology of a quasi-Frobenius algebra, Nagoya Math. J. 13 (1958), 115-121.
- 10. ——, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300-307.
- 11. H. Tachikawa, A characterization of QF-3 algebras, Proc. Amer. Math. Soc. 13 (1962), 701-703.
- 12. R. M. Thrall, Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183.
- 13. D. W. Wall, Algebras with unique minimal faithful representations, Duke Math. J. 25 (1958), 321-329.

KYOTO TECHNICAL UNIVERSITY, KYOTO, JAPAN